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PROCEDURE FOR DETERMINING OPTIMUM EQUIPMENT RANGES

Professor Yu.V. Chuyev, Doctor of Techmnical Sciences

The methods of a now rapidly developing science, operations
analysis, should provide the methodological basis for determining
optimum ranges of equipment, assemblies and parts [1, 2, 3].

Let us look at some of the simplest examples of the process
of selecting optimum equipment ranges utilizing these methods.

Let us assume we know the function of the required nonstop
passenger aircraft flight distance (it may be obtained by statis-
tical analysis of available material). We have now to solve the
following problem: should we develop a single type of aircraft
capable of flying any distance which would be encountered in
actual operation; two types, one of which can cover any distance,
the other capable of only shorter flights but therefore simpler
and less costly; or several types?

The more types of aircraft, the lower the cost of each flight,
since the type of aircraft required will be selected on the basis
of the flight distance required. At the same time, however, ex-
penditures increase for aircraft development, testing and produc-
tion (several types have to be developed rather than only one);
the production cost of a given type of aircraft goes up because
of the reduced volume of production of aircraft of each type;
and, finally, relative expenditures for the operation of aircraft
of each type may possibly increase.
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This problem thus has an optimum solution.

This type of problem may be encountered in the process of
calculating a range of load capacities for motor vehicles and
riverine and maritime vessels, the capacity of forging and pres-
sing equipment, lathe dimensions and so forth.

An analogous problem might be posed in connection with indi-
vidual equipment assemblies, or even parts. We will henceforth
refer to them as articles.

Let us give the mathematical formula for this problem.

The following are given:

g(x) - function of the cost of producing a
single article;
gl(x) - function of the cost of developing
and testing a new model and putting
it into production;
gz(x) - cost of model operation for a unit
of time;
Fon -~ fw«n¢~ - integral function of the demand for

articles having argument x (range,
load capacity, etc.), where @(x) -
- differential function of demand.

We have now to find the optimum number of types of article
and the values of their arguments with which total expenditures
will be minimized.

Let us assume N - types of articles selected, whose arguments
consist of Xpr Xpy eeey Xpy cons Xy Each article of the (k+l)th
type is used within the range of argument values from X £O Xp4-
Disregarding malfunction of the article according to operation,
we may then write the following expression for total expenditures:
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Here T - period of time under consideration;

v - coefficient of the degree of increase in expenditures

for production of a batch depending on the number of
articles produced.

We have now to calculate that set of X o including their N
number, in order to minimize S;.

The problem here under consideration is single-dimensional
since it has only one argument. Other varieties of series-selection
problems are also possible. an example of the classification of
which is presented in the diagram below.

We bhave in actual practice to deal with problems involving
two dimensions and more. Flight range and aircraft 1oad capacity
may be selected simultaneously, for example. These problems are
substantially more complex.

Two-dimensional problems require minimization of a functional
of the following type:
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Here we must also select pairs of values X ylg ...xk; Yys oo Xy
Yy and including N as well.

In any of these instances there may also be ifixed articles,
that is, articles developed and ready for production by a given
time. The problem is then reduced to determining the parameters
of the additional articles given the range of fixed articles.

Above we have looked at cases in the argument for an article
can be no less than a required value. The problem can also be
stated somewhat differently: if the argument of a given type of
article is less than required, the article may be used; but other
expenses are incurred in this instance whose value depends on
the ratio of the argument required to the argument of the article.
If the maximum flying range of an aircraft is less than that given,
for example, it can complete its flights from intermediate air-
fields, which requires additional expenditures. Insufficient
load capacity of an article may result in a need for preliminary
disassembly of the load, the use of two articles and then assembly
of the load, which also requires additional expenditures. The
one-dimensional problem then requires selection of two systems
of values: arguments for the articles and the required arguments
up to which one article or another should be used.

By selecting the value pairs X5 2 ; X.3 2., We must

1; N N
in this instance minimize the following sum:

B J N
(] AJ
Sw= N Fir = Fuplac, )+ N+
=0 R
r N
N [ B ) (3)
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Problems of range selection may, finally, be both statistical
and dynamic. The latter involve the process of optimum change

in @ range over time. These problems are a combination of
statistical problems in the selection of an optimum range and

generalized equipment replacement problems.
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KEY: 1 - Statistical; 2 - dynamic; 3 - production; 4 - development;
5 - operation; 6 - nature of time calculation; 7 - expenditures to
be considered; 8 - penalty in case of argument deficiency; 9 - im-
permissible; 10 - one-dimensional; 11 - two-dimensional; 12 - three-
dimensional; 13 - dimensionality; 14 - problems in selecting opti-
mum scales; 15 - use of model with argument less than that required
permissible; 16 - availability of fixed models; 17 - unavailable;
18 - available.

Problems in selecting optimum range are in character related
to distribution problems but differ from the latter in that they
involve nonfixed argument values, as well as an unspecified number
of arguments, which complicates their solution substantially.

In the general case, these problems may be solved by the
dynamic programming method using a computer, but even then their
solution requires large expenditures of machine time.

Utilizing the nondecreasing characteristics of the functions
F(x), g(x), gl(x) and gz(x), V. T. Dement'yev [4] has been able
to put forward a substantially simpler algorithm for solving one-
dimensional problems without penalties and which may be generalized
to the general case of two-dimensional problems without penalties,
one-dimensional problems with penalties and to special cases of
three-dimensional problems without penalties.
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The random search method [5], which makes it possible to
obtain an approximate solution with acceptably small expenditures
of machine time, might be a third method of solving these problems.

In conclusion, let us present an example with respect to
obtaining the analytical formulas.

Let us assume

F(x) = bx when

(4)
F(x) = 0 when

that is, the differential function of demand is constant within

the range W € Am and equal to zero beyond the limits of
this range;

g(N)Y  uy, (5)
2y oy, (6)
Lty (7)

that is, expenditures for production, development and operation
are proportional to the argument;

V=1, that is, the cost of producing a batch is proportional
to its volume.

Total expenditures at optimum argument values as well as

the optimum argument values may then be calculated in accordance
with the following formulas

Ym ', \ t \ ! |‘.,, P (8)

where X = ¢
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j - oumber of article type.
The table below shows the dependence of the coefficients on the
number of article types.

Given N, we can use formula
(8) to calculate 5° and thereby
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xO/xN = 0.1 and d = 0. We can
see from the figure that by
selecting the optimum range (the optimum value of N is 4 in the
case under consideration), we can substantially reduce total ex-
penditures (by 35%).

Optimum argument values when N = 4 are as follows: xl/xN =
= 0.25; x2/xN = 0.45; x3/xN = 0.70; XA/XN = 1.00.

The problem is solved in a manner roughly similar to that
described above in standardizing articles of mass production,
that is, by selecting the optimum parametric range [6]. In this
instance we may impose the following additional condition: the
values selected for xj must be members of a geometric progression

with the denominator ;:6 . This problem is then simplified
substantially. For in fact,

w al} 0" (9)

Taking into consideration the fact that

ol

tyea(y )Y - a0 (10)
re @ (11)

it is easy with a given N to calculate the value a from (l11) and

n from the following expression, which is a corollary of (10):
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é \\/\ —
0‘3 ///” It is thus necessary to find
‘ // e the extremum of the functional of
04 / i;//if' one variable of N as calculated
<, T . .
ol / , L using equations (1), (9), (11) and
der . - . , . .
d VAR A ,4}37 (12), which, taking into considera-
- ‘ " ; '} tion the discrete character of the

r

value N, does not present diffi-

culties. It is recommended in
this connection that total expenditures in the case of compliance
with condition (11) be compared with those when this condition is
not complied with, which makes it possible to substantiate conclu-
sions concerning the advantage of adhering to this condition.

Finally, we may impose the condition that argument values
must be selected from among existing series of preferred numbers
(R5, R10, R20, R40 for example). The problem is then reduced
to calculating SN when x /XO corresponding to different setles
of preferred numbers and selecting that series in which SN will
be minimal.

As is true in the preceding case, it is to advantage to com-
pare this value with that which will obtain if we do not impose
the condition that the arguments correspond to one of the series
of preferred numbers.
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